This page was generated from
examples/ConsAggShockModel/AggShockConsumerType.ipynb.
Interactive online version:
.
Download notebook.
Interactive online version:
Example ConsAggShockModel#
[1]:
from copy import deepcopy
from time import process_time
import matplotlib.pyplot as plt
import numpy as np
from HARK.ConsumptionSaving.ConsAggShockModel import (
AggShockConsumerType,
AggShockMarkovConsumerType,
CobbDouglasEconomy,
CobbDouglasMarkovEconomy,
)
from HARK.distributions import DiscreteDistribution
from HARK.utilities import plot_funcs
def mystr(number):
return f"{number:.4f}"
[2]:
# Solve an AggShockConsumerType's microeconomic problem
solve_agg_shocks_micro = False
# Solve for the equilibrium aggregate saving rule in a CobbDouglasEconomy
solve_agg_shocks_market = True
# Solve an AggShockMarkovConsumerType's microeconomic problem
solve_markov_micro = False
# Solve for the equilibrium aggregate saving rule in a CobbDouglasMarkovEconomy
solve_markov_market = False
# Solve a simple Krusell-Smith-style two state, two shock model
solve_krusell_smith = True
# Solve a CobbDouglasEconomy with many states, potentially utilizing the "state jumper"
solve_poly_state = False
Example implementation of AggShockConsumerType#
[3]:
if solve_agg_shocks_micro or solve_agg_shocks_market:
# Make an aggregate shocks consumer type
AggShockExample = AggShockConsumerType()
AggShockExample.cycles = 0
# Make a Cobb-Douglas economy for the agents
EconomyExample = CobbDouglasEconomy(agents=[AggShockExample])
EconomyExample.make_AggShkHist() # Simulate a history of aggregate shocks
# Have the consumers inherit relevant objects from the economy
AggShockExample.get_economy_data(EconomyExample)
[4]:
if solve_agg_shocks_micro:
# Solve the microeconomic model for the aggregate shocks example type (and display results)
t_start = process_time()
AggShockExample.solve()
t_end = process_time()
print(
"Solving an aggregate shocks consumer took "
+ mystr(t_end - t_start)
+ " seconds.",
)
print(
"Consumption function at each aggregate market resources-to-labor ratio gridpoint:",
)
m_grid = np.linspace(0, 10, 200)
AggShockExample.unpack("cFunc")
for M in AggShockExample.Mgrid.tolist():
mMin = AggShockExample.solution[0].mNrmMin(M)
c_at_this_M = AggShockExample.cFunc[0](m_grid + mMin, M * np.ones_like(m_grid))
plt.plot(m_grid + mMin, c_at_this_M)
plt.ylim(0.0, None)
plt.show()
[5]:
if solve_agg_shocks_market:
# Solve the "macroeconomic" model by searching for a "fixed point dynamic rule"
t_start = process_time()
print(
"Now solving for the equilibrium of a Cobb-Douglas economy. This might take a few minutes...",
)
EconomyExample.solve()
t_end = process_time()
print(
'Solving the "macroeconomic" aggregate shocks model took '
+ str(t_end - t_start)
+ " seconds.",
)
print("Aggregate savings as a function of aggregate market resources:")
plot_funcs(EconomyExample.AFunc, 0, 2 * EconomyExample.kSS)
print(
"Consumption function at each aggregate market resources gridpoint (in general equilibrium):",
)
AggShockExample.unpack("cFunc")
m_grid = np.linspace(0, 10, 200)
AggShockExample.unpack("cFunc")
for M in AggShockExample.Mgrid.tolist():
mMin = AggShockExample.solution[0].mNrmMin(M)
c_at_this_M = AggShockExample.cFunc[0](m_grid + mMin, M * np.ones_like(m_grid))
plt.plot(m_grid + mMin, c_at_this_M)
plt.ylim(0.0, None)
plt.show()
Now solving for the equilibrium of a Cobb-Douglas economy. This might take a few minutes...
intercept=-0.33966384051602827, slope=1.102624348735711, r-sq=0.9966224603747361
intercept=-0.4959923714165125, slope=1.1479009506512385, r-sq=0.99473669162057
intercept=-0.45166864478060786, slope=1.1124057973784134, r-sq=0.9821113562470477
intercept=-0.3840154156210827, slope=1.0841395602960584, r-sq=0.9875705261040257
intercept=-0.36198128155029563, slope=1.0753681485578617, r-sq=0.9905843996750162
intercept=-0.3523090029998188, slope=1.0715656485158445, r-sq=0.9908961093312041
intercept=-0.34805666066738283, slope=1.0699082913395124, r-sq=0.9910154806768872
intercept=-0.3461952993752169, slope=1.0691876132809157, r-sq=0.991065010874361
intercept=-0.3453850118498396, slope=1.0688755589956198, r-sq=0.9910860802385022
intercept=-0.3450341442894489, slope=1.068741033425316, r-sq=0.9910951040899086
intercept=-0.3448829558954367, slope=1.0686832829276534, r-sq=0.9910989700363684
intercept=-0.3448180900636173, slope=1.0686585844571508, r-sq=0.991100623001836
Solving the "macroeconomic" aggregate shocks model took 154.01046979999998 seconds.
Aggregate savings as a function of aggregate market resources:
/mnt/c/Users/alujan/GitHub/alanlujan91/HARK/HARK/ConsumptionSaving/ConsAggShockModel.py:3207: RuntimeWarning: divide by zero encountered in log
Aagg = np.exp(self.intercept + self.slope * np.log(Mnow))
Consumption function at each aggregate market resources gridpoint (in general equilibrium):
Example Implementations of AggShockMarkovConsumerType#
[6]:
if solve_markov_micro or solve_markov_market or solve_krusell_smith:
# Make a Markov aggregate shocks consumer type
AggShockMrkvExample = AggShockMarkovConsumerType()
AggShockMrkvExample.IncShkDstn = [2 * [AggShockMrkvExample.IncShkDstn[0]]]
AggShockMrkvExample.cycles = 0
# Make a Cobb-Douglas economy for the agents
MrkvEconomyExample = CobbDouglasMarkovEconomy(agents=[AggShockMrkvExample])
MrkvEconomyExample.DampingFac = 0.2 # Turn down damping
MrkvEconomyExample.make_AggShkHist() # Simulate a history of aggregate shocks
AggShockMrkvExample.get_economy_data(
MrkvEconomyExample,
) # Have the consumers inherit relevant objects from the economy
[7]:
if solve_markov_micro:
# Solve the microeconomic model for the Markov aggregate shocks example type (and display results)
t_start = process_time()
AggShockMrkvExample.solve()
t_end = process_time()
print(
"Solving an aggregate shocks Markov consumer took "
+ mystr(t_end - t_start)
+ " seconds.",
)
print(
"Consumption function at each aggregate market \
resources-to-labor ratio gridpoint (for each macro state):",
)
m_grid = np.linspace(0, 10, 200)
AggShockMrkvExample.unpack("cFunc")
for i in range(2):
for M in AggShockMrkvExample.Mgrid.tolist():
mMin = AggShockMrkvExample.solution[0].mNrmMin[i](M)
c_at_this_M = AggShockMrkvExample.cFunc[0][i](
m_grid + mMin,
M * np.ones_like(m_grid),
)
plt.plot(m_grid + mMin, c_at_this_M)
plt.ylim(0.0, None)
plt.show()
[8]:
if solve_markov_market:
# Solve the "macroeconomic" model by searching for a "fixed point dynamic rule"
t_start = process_time()
print("Now solving a two-state Markov economy. This should take a few minutes...")
MrkvEconomyExample.solve()
t_end = process_time()
print(
'Solving the "macroeconomic" aggregate shocks model took '
+ str(t_end - t_start)
+ " seconds.",
)
print(
"Consumption function at each aggregate market \
resources-to-labor ratio gridpoint (for each macro state):",
)
m_grid = np.linspace(0, 10, 200)
AggShockMrkvExample.unpack("cFunc")
for i in range(2):
for M in AggShockMrkvExample.Mgrid.tolist():
mMin = AggShockMrkvExample.solution[0].mNrmMin[i](M)
c_at_this_M = AggShockMrkvExample.cFunc[0][i](
m_grid + mMin,
M * np.ones_like(m_grid),
)
plt.plot(m_grid + mMin, c_at_this_M)
plt.ylim(0.0, None)
plt.show()
[9]:
if solve_krusell_smith:
# Make a Krusell-Smith agent type
# NOTE: These agents aren't exactly like KS, as they don't have serially correlated unemployment
KSexampleType = deepcopy(AggShockMrkvExample)
KSexampleType.IncShkDstn[0] = [
DiscreteDistribution(
np.array([0.96, 0.04]),
np.array([[1.0, 1.0], [1.0 / 0.96, 0.0]]),
),
DiscreteDistribution(
np.array([0.90, 0.10]),
np.array([[1.0, 1.0], [1.0 / 0.90, 0.0]]),
),
]
# Make a KS economy
KSeconomy = deepcopy(MrkvEconomyExample)
KSeconomy.agents = [KSexampleType]
KSeconomy.AggShkDstn = [
DiscreteDistribution(
np.array([1.0]),
np.array([[1.0], [1.05]]),
),
DiscreteDistribution(
np.array([1.0]),
np.array([[1.0], [0.95]]),
),
]
KSeconomy.PermGroFacAgg = [1.0, 1.0]
KSexampleType.get_economy_data(KSeconomy)
KSeconomy.make_AggShkHist()
# Solve the K-S model
t_start = process_time()
print(
"Now solving a Krusell-Smith-style economy. This should take about a minute...",
)
KSeconomy.solve()
t_end = process_time()
print("Solving the Krusell-Smith model took " + str(t_end - t_start) + " seconds.")
Now solving a Krusell-Smith-style economy. This should take about a minute...
intercept=[-0.5817183825422839, -0.5703319414353534], slope=[1.180307914835392, 1.182408206717251], r-sq=[0.9975542198241366, 0.9980320884475001]
intercept=[-0.4180260563496857, -0.41316539564814475], slope=[1.08342735891103, 1.0852799171504508], r-sq=[0.99973377603989, 0.9993225507148125]
intercept=[-0.3600899736514895, -0.35512016452337497], slope=[1.0714753213364976, 1.0712256905434414], r-sq=[0.9999986714166439, 0.9999961301697309]
intercept=[-0.3788395320005977, -0.3715109817321105], slope=[1.0786573434429672, 1.0774887741894947], r-sq=[0.9999982037028008, 0.9999942754223826]
intercept=[-0.37896012954317376, -0.37156486819095047], slope=[1.0787111353569707, 1.0775241504232804], r-sq=[0.9999982049718272, 0.9999940788572959]
intercept=[-0.37899550407019866, -0.3715956660284524], slope=[1.0787232463104646, 1.0775357473879463], r-sq=[0.9999982037318698, 0.9999940713848707]
Solving the Krusell-Smith model took 41.253191999999984 seconds.
[10]:
if solve_poly_state:
StateCount = 15 # Number of Markov states
GrowthAvg = 1.01 # Average permanent income growth factor
GrowthWidth = 0.02 # PermGroFacAgg deviates from PermGroFacAgg in this range
Persistence = 0.90 # Probability of staying in the same Markov state
PermGroFacAgg = np.linspace(
GrowthAvg - GrowthWidth,
GrowthAvg + GrowthWidth,
num=StateCount,
)
# Make the Markov array with chosen states and persistence
PolyMrkvArray = np.zeros((StateCount, StateCount))
for i in range(StateCount):
for j in range(StateCount):
if i == j:
PolyMrkvArray[i, j] = Persistence
elif (i == (j - 1)) or (i == (j + 1)):
PolyMrkvArray[i, j] = 0.5 * (1.0 - Persistence)
PolyMrkvArray[0, 0] += 0.5 * (1.0 - Persistence)
PolyMrkvArray[StateCount - 1, StateCount - 1] += 0.5 * (1.0 - Persistence)
# Make a consumer type to inhabit the economy
PolyStateExample = AggShockMarkovConsumerType()
PolyStateExample.MrkvArray = PolyMrkvArray
PolyStateExample.PermGroFacAgg = PermGroFacAgg
PolyStateExample.IncShkDstn[0] = StateCount * [PolyStateExample.IncShkDstn[0]]
PolyStateExample.cycles = 0
# Make a Cobb-Douglas economy for the agents
# Use verbose=False to remove printing of intercept
PolyStateEconomy = CobbDouglasMarkovEconomy(
agents=[PolyStateExample],
verbose=False,
)
PolyStateEconomy.MrkvArray = PolyMrkvArray
PolyStateEconomy.PermGroFacAgg = PermGroFacAgg
PolyStateEconomy.PermShkAggStd = StateCount * [0.006]
PolyStateEconomy.TranShkAggStd = StateCount * [0.003]
PolyStateEconomy.slope_prev = StateCount * [1.0]
PolyStateEconomy.intercept_prev = StateCount * [0.0]
PolyStateEconomy.update()
PolyStateEconomy.makeAggShkDstn()
PolyStateEconomy.make_AggShkHist() # Simulate a history of aggregate shocks
PolyStateExample.get_economy_data(
PolyStateEconomy,
) # Have the consumers inherit relevant objects from the economy
# Solve the many state model
t_start = process_time()
print(
"Now solving an economy with "
+ str(StateCount)
+ " Markov states. This might take a while...",
)
PolyStateEconomy.solve()
t_end = process_time()
print(
"Solving a model with "
+ str(StateCount)
+ " states took "
+ str(t_end - t_start)
+ " seconds.",
)